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Regions of different heat transfer regimes and the dependence of heat
transfer coefficients on the length of a curved channel have been
determined by an experimental investigation.

The main peculiarity of convective heat transfer
in a curved channel is due to the field of mass centrif-
ugal forces which causes the appearance of a vortex
pair in the transverse section of the channel. For
large heat fluxes and substantial channel cross-section
dimensions an additional factor complicating the phe-
nomenon will be thermal convection due to gravita-
tional body forces. The complex nature of convective
heat transfer, occurring here in conditions of coupled
superposition of forced motion and secondary flows
due to body forces, impels the investigator to turn to
an experimental method.

The chief element of the experimental equipment
(Fig.1) is a horizontally positioned short curved chan-
nel (I /d, = 13.3), with a smooth entrance, a square
cross section of 49 X 49 mm, and a radius of curva-
ture of the channel axis of R = 150 mm. The thin-
walled plates forming the channel were of EI-437B
steel and were jointed by means of epoxy adhesive.
Water was supplied to the experimental section from
a constant-level bath, its flow rate being determined
by means of a measuring vessel downstream of the
experimental section. Each plate forming the working
channel had an electric heater with individually con~
trollable current values. For equalization of tempera-
ture, a layer of copper 0.1 mm thick was electro-
deposited on the plate surfaces on the heater side.

The heat transfer coefficient on the convex, con-
cave, and flat surfaces forming the channel were
determined by the gradient method.

On the surface of a curved or flat plate in which a
two-dimensional temperature field exists, the mean
heat transfer coefficient in a length x < I, which cor-
responds to a central angle ¢, is given by

P
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In calculating the heat transfer coefficient o from
{1) for a curved and a flat plate one needs to know the
temperature fields t = f(r, ¢) and t = F(y, ¢). The
equations of these fields were obtained by integra-
tion of the heat conduction differential equation, but
their specific form is determined by the temperature
distribution on the contours of the longitudinal section
of the plates forming the channel. The mathematical

basis for the gradient method for curved channels
has been examined in [1, 2T*.

Temperatures were measured on two curved and
one flat plate with the aid of nichrome-constantan
thermocouples. The thermocouple junctions were in
the form of disks of 0.2-mm diameter and were sol-
dered into recesses in the wall so as to be flush with
the surface. Thermocouple leads of 0.2-mm diameter
were laid in grooves and anchored with epoxy adhe-
sive. The number of thermocouples was 22 on the
inside surface of each plate, 12 on the outer, and
5 each on the edges. The spacing of the thermo-
couples increased with increasing distance from the
channel entrance. The measurement of temperature
was made using an R2/1 potentiometer.

Two-dimensionality of the temperature field, i.e.,
absence of heat flux across the plate, was attained
by means of thermal insulation of the side surfaces,
and by compensating for the side heat loss by increas-~
ing the heater width in comparison with the plate
width. At three sections of each plate six "tuning”
thermocouples were attached over the width of the
plate and were used to control the homogeneity of
the temperature field in that direction.

The stream temperature was varied in the range
18°=35°C, that of the inside surfaces of the channel
walls in the range 25°—-60°C, and the stream velo-
city in the range 0.00167-0.351 m/sec during the
experiments.

Reduction of the test results was done on a "Minsk"
computer. The temperatures measured on the sur~
faces were approximated by power multinomials with
the aid of orthogonal Chebyshev polynomials. A sat-
isfactory approximation of the temperature relations
was attained using multinomials of not more than the
fourth order.

The integral appearing in (1) is expressed in terms
of a sum of terms of an infinite series. A satisfactory
accuracy in calculating this sum was reached with a
number of terms not in excess of 60. Averaging of
the heat transfer coefficient over the perimeter of the
transverse section of the channel was accomplished
according to the areas under the assumption that the
two flat surfaces have the same heat transfer coef-
ficient. The mean heat transfer coefficients were

*In [2] the analytical solution of the temperature
field problem was extended to the case of arbitrary
heat transfer conditions on the faces of plates form-
ing a channel.
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calculated for 12 values of x/de—0.52, 1.02, 1.6, 2.43,
3.21, 4.05, 4.8, 6.38, 8.05, 9.6, 11.2, 13.3.
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Fig, 2. The criteria Nu and P as a function
of Reynolds number: 1) according to the for-
mula for laminar, transitional, and turbu-
lent flow in a tube; 2) according to Eq. (5);
3,4, 5,6) author's experimental data for x/d =
=16, 4.8, 9.6 and 13.3 respectively: dotted

“lines a,b,c, and d—according to the Meteis
formula (14) for the same x/d values; I) re-
gion of thermal convection; II) region of
mixed convection; III) region of laminar

flow with macrovortices.

In processing the test data the mean fluid temper-
ature was taken as a reference. The mixing temper-
ature was measured at the entrance to and at the
exit from the working section. In view of the small
change in fluid temperature in the working section
(2°=0.2°), a linear change of fluid temperature along
the channel was adopted. The mean fluid temperature
for a section of the channel was determined as the
arithmetic mean of the temperatures at the ends of
the section. The equivalent diameter was taken as a
reference dimension.

Analysis of the differential equation of motion of
a fluid in a body force field [3] has given a similarity
criterion that reflects the effect of body forces on the
stream:

P =AFB/pPt. (2)

If a difference AF of mass forces arises in a grav~
itational force field from nonuniformity of density,
then, taking the channel height h = d, as a reference
dimension, we obtain

3
p— &gt —ar. (3)
,V2
In a centrifugal force field AF =pW? .. /R. For

laminar flow Wy,,/W = 2. The distance between
the points with maximum and minimum centrifugal
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force (h/2) is taken as a reference dimension. Al-
lowing for this we obtain from (2)

Wde \? de de
P = —£ = Re? ——& = De?. 4
( v ) D D @

The gravitational and centrifugal forces lead to
the appearance, in the transverse section of the
curved channel, of paired vortices whose axes of
symmetry are perpendicular.

The upper part of Fig. 2 shows the form of the
secondary flows due to the centrifugal (A) and grav-
itational (B) forces. One of the force fields will there-
fore have a decisive effect on the heat transfer pro-
cess, and the strength of their influence on the stream
may be compared by comparing the Gr and De’num-
bers. The upper part of Fig. 2 shows the variation
of Gr and De? with Re number observed in the exper-
iments. The lower part of the figure shows the ex-
perimental results in the form of a correlation Nuy =
= f(Rey) for four relative channel lengths. The Nu
number was determined from the mean heat transfer
coefficient for the channel. The relation Nu; = f(Rey)
is also given for a long straight tube, as calculated
by the formulas of Mikheeva [4] (line 1), and for heat
transfer in long coiled tubes under laminar conditions
with macrovortices, obtained by reducing the test
data from [5] and [6] (line 2)

Nuj = 0.0575 Re- ™ P1&-4 (¢/D)°# (Pry/Pr, 0. (5)

This formula was obtained by putting the test data
into the form Ky = f(De) with De = 26-7 - 10°, where

Nuy; N

= = . (8)
Re%-3 Pro-# (Pr/Pry)®®  Nu,

K;

An investigation was made in [5] of heat transfer
in long coiled tubes using water as the heat transfer
agent and D/d = 6.2~23.8, Res = 2-10°-2.5-10% 1/d >
> 60. In [6] the coiled tubes were investigated with
D/d = 23-62.5, Rey = 63-2.1-10% 1/d >218. The heat
transfer agent was three kinds of liquid with Pr =
=T7-369.
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Fig. 3. Dependence of Ky on De number:

1) from Eq. (5): 2, 3, 4, 5) author's experi-
mental data with x/d = 1.6, 4.8, 9.6, and
13.3 respectively: dotted lines a, b, c, and

d are from Eq. (16) for the same x/d values,
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Formula (5) was obtained at small Gr and may be
used whenever the effect of that parameter on the
heat transfer may be neglected.

Figure 3 shows the relation K; = f(De) for various
relative channel lengths, and gives also for compar-
ison the line 1, constructed from (5), which it is
convenient in this case to write in the form

Nujy == 0.0575 Re¢-8 Deg-42 Pro-45 (Pry/Pry)0 5. (7)

Analysis of Figures 2 and 3 enables us to deter-
mine the heat transfer regimes.

It may be seen from Fig. 2 that for Re, = 1700 the
heat transfer intensity is independent of Re, and
therefore Nu in this region is determined exclusively
by the thermal convection while De? <« Gr. The ther-
mal convection region is designated by the numeral I
in the figures.

Figure 3 shows that for Re = 1700—~6000 (De =
= 690~2400) the De number, and therefore also the
centrifugal forces, have practically no influence on
the heat transfer intensity. ¥Figure 2 shows that in
the major part of this region Gr is consgiderably
larger than De’, the two quantities only becoming
comparable in the right side of the region. For this
reason it may be asserted that region II is 2 mixed
convection region in which the heat transfer is de-
termined by the simultaneous influence of forced and
free convection on the stream.

With further increase of Re the heat transfer in-
tensity increases with increase of De (Fig. 3), as
De? > Gr, and therefore the effect of thermal con-
vection on the heat transfer may be neglected. As is
known from analysis of flow structure in coiled tubes,
there will be laminar flow of the fluid with macro-
vortices (Region IID) in this region of variation of Re
and De (Re > 6000, De > 2400). The upper boundary
of this region may be estimated by Aronov's formula,
obtained for long coiled tubes of circular section [7]:

Re,, =18 500 (d/D)>? . (8)

For the curved channel investigated (D/de =6.1),

a value Re,,, = 1.1-10* was obtained from (8). This
number may change substantially for short channels,
however. In the present tests (Refup to 2- 169, we
were not able to determine the upper boundary of
region III sharply.

The boundary established in the present investi-
gation for the thermal and mixed convection region
in a horizontal tube is not universal. For (GrPr)y =
=3.1- 107(Grf =4.5-10°% the mixed convection region
occurs for Rep = 1700. For other values of (GrPr)f
special experiments are required to discover the
boundaries of this region.

The boundary of the regions of mixed convection
and of laminar flow with macrovortices due to centrif-
ugal forces may be found approximately from the con-
dition Gry = Des?,

The literature containg no information on convec—
tive heat transfer in a fluid flowing through a horizon-
tal tube, under conditions when the heat transfer is
governed by thermal convection.
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Therefore, in order to generalize the experimental
data on the effect of channel length on heat transfer
in the thermal convection region I, the results were
compared with Oliver's formulas {8] for mixed con-
vection in laminar flow, and with those of Mikheeva
[4] for free convection around the outer surface of a
horizontal tube. For mixed convection in a horizon-
tal tube with [/d = 70, Oliver obtained the formula

Nuy = 1.75 [Gz; 4 0.0083 (Gr Pr)0- 751 (/s ) M. (9)

When the influence of forced motion on the heat
transfer is removed, Gz — O, and (9) takes the form

Nu; = 0.35(Gr Pr)‘fl25 {1/ 0 14 {10}

Mikheeva's formula for free convection arocund the
outer surface of horizontal tubes has the form

Nu; = 0.51 (Gr Pr)§-» (Pr/Pry,)°-%. 11

The upper part of Fig. 4a shows experimentai
points for three values of Re typical of the I region.
Line 1 corresponds to (10), and line 2 corresponds to
{11). It may be seen that the experimental heat trans-
fer results are in good agreement with Mikheeva's
formula. The lower part of Fig. 4a shows the rela-
tion Nuf/NufO = f(x/dy), the quantity Nuy, used in the
construction of which being calculated according to
(11). Approximatingthe test datawe obtain the formula

Nuy/Nug, = 0.91 4 2.95 (de/x)0-57, (12}
corresponding to line 6 on the figure.
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Fig, 4. Comparison of the experimental and calcu-
lated data in Regions I (a) and III (b) of the flow: 1)
from Eg. (10); 2) from Egq. (11); 3, 4, 5) experi-
mental data of the author for Rey = 88, 740, and
1705 respdetively; 6) from Eq. (12); 7, 8, 9) author's
experimental data for Def = 2556, 4260, and 6969;
10, 11, 12) from Eq. (7) for the same values of De;
13) from Eqg. (15).
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Thus, for short horizontal tubes and channels
(straight and curved), the coefficient of heat transfer
between the fluid and the wall, under conditions when
thermal convection plays an important part, may be
calculated from the formula

Nuf =
=0.51(Gr I—’r)‘;-25 (Pry/Pr,, )05 [0.91 4 2.95 (dg/x)0-8]. (13)

The experimental data on heat transfer in mixed
convection (Region II) have been compared with
Meteis' formula which was obtained for straight hori-
zontal tubes in turbulent flow:

Nu; = 4.69 Re} 27 Pro-2t Grd-07 (d/x)0-%. (14)

The dotted lines a, b, ¢, and d in Fig, 2 correspond
to Eq. (14) for the values of Gr and Pr occurring in
the tests and with x/d, = 1.6, 4.8, 9.6, 13.3.

It may be seen that Eq. (14) is roughly a correct
description of the effect of relative channel length on
the intensity of heat transfer in the conditions under
examination.

The reduction of the test data for the region of lam-
inar flow with macrovortices (III} was performed under
the assumption that the heat transfer coefficient in a
long channel of square section may be described by
Eq. (7).

The upper part of Fig. 4b shows the experimental
points defining the relation Nuyg = J(x/d,) for three
values of De, while the lines 10, 11, and 12 have been
calculated for these same De values according to (7).
Assuming that (7) is valid for x/dg = 50, the test data
examined above may be used to obtain a correction to
the length required for calculating heat transfer in
short curved channels.

The lower part of Fig. 4b shows the relation Nuf/
/ Nugg, for which the quantity Nuf0 has been deter-
mined from (7). This relationship is described well by
the formula

Nuy/Nuy, = 0.96 - 2.41 (d,/x)1-0%, (15)

corresponding to line 13 in Fig, 4b,

Therefore, for laminar flow with macrovortices,
the heat transfer in short curved channels may be
calculated from the formula

Nu; = 0.0575 Re{-# De-#? Pr{-43 x
0.25 1.025
x(ﬁ) [0.96-; 2.41 (ﬁi) ] (16)

Pr W X
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The dotted lines a, b, ¢, and d in Fig. 3 corre-
spond to (16) for four values of x/d. It may be seen
that the agreement with the experimental data is fully
satisfactory right up to Def =7+ 10%, which corre-
sponds in the experiments to a value Ref =1.7- 104,

NOTATION

D is the diameter of curvature of the channel axis;
d is the tube diameter; d, is the equivalent diameter;
AF is the difference in the mass forces; g is the ac-
celeration due to gravity; h is the channel height; K¢
is a coefficient defined by Eq. (6); [ is the charac-
teristic dimension, the channel length; n is the normal
to the heat transfer surface; P is a parameter de-
scribing the influence of mass forces on the stream of
fluid; R is the radius of curvature of the channel axis;
t is the temperature; Aty is the mean temperature
head; (dt/on),_, is the normal temperature gradient at
the heat transfer surface; W is the flow velocity of the
fluid; Wy, 45 is the maximum velocity in the channel
section; X, y, and r are coordinates; Gr is the Grashof
number; Gz is the Graetz number; Nu is the Nusselt
number; Pr is the Prandtl number; Re is the Reynolds
number; De is the Dean number; « is the mean heat
transfer coefficient; f is the coefficient of volume ex-
pansion; A is the thermal conductivity of the wall ma-~
terial; u is the dynamical viscosity; vis the kinematic
viscosity; p is the density; ¢ is the angle at the center
corresponding to a channel length x. The subscripts f
and W describe physical parameters evaluated at the
temperature of the fluid and of the wall, respectively.
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